Alba's Notes Alba's Notes Alba's Notes Notes Planner
CTRL K
    GitHub
    CTRL K
      • Computer Science
        • Clean Code
          • Meaningful Names
          • Functions
          • Comments
          • Formatting
          • Objects and Data Structures
          • Error Handling
          • Boundaries
          • Unit Tests
          • Classes
          • Systems
          • Emergence
          • Concurrency
          • Smells and Heuristics
        • Elements of Computer Systems
          • Boolean Logic
          • Boolean Arithmetic
          • Memory
          • Machine Language
          • Computer Architecture
          • Assembler
          • Virtual Marchine I: Processing
          • Virtual Marchine II: Control
          • Compiler I: Syntax Analysis
          • Compiler II: Code Generation
          • Operating System
        • Real-Time 3D Graphics with WebGL 2
          • Getting Started
          • Rendering
          • Lights
          • Camera
            • Transformations
            • Model, View and Projection Transform
              • Perspective Matrix
              • Orthografic Matrix
            • Normal Transform
            • Camera Matrix
          • Animations
          • Colors, Depth Testing, and Alpha Blending
          • Textures
          • Picking
          • Putting It All Together
          • Advanced Techniques
          • WebGL Hightlights
      • Data Science
        • Artificial Intelligence Robotics
          • Histogram Localization
          • Kalman Filters
          • Particle Filters
          • Search
          • PID Control
          • SLAM
        • Data Science Master
          • Aprendizaje Automático II
            • Tema 1. Random Forests
            • Tema 2. Intensificación (boosting)
            • Tema 3. Otras Combinaciones de Modelos
            • Tema 4. Aprendizaje No Supervisado
          • Deep Learning
            • T1. Fundamentos de las Redes Neuronales Profundas
            • T2. Tipologías de las redes neuronales profundas
            • T3. Herramientas y estrategias de programación e implemetación de redes neuronales
            • T4. Redes Neuronales Convolucionales en Visión Artificial
            • T5. Redes Neuronales Recurrentes
            • T6. Servicios y Proveedores de Deep Learning en la Nube
          • Modelos Bayesianos Jerárquicos
            • Introduccion a la Inferencia Bayesiana
            • Modelos Jerarquicos
            • Evaluación y Comparación de Modelos
            • Aspectos Computacionales de la Inferencia Bayesiana
            • Appendix
          • Infraestructuras Computacionales para Procesamiento de Datos Masivos
            • Ecosistema Big Data
            • Técnicas de procesamiento masivo
            • Gestión de la información en tiempo real
            • Servicios en la nube para el almacenamiento y procesamiento de datos
          • Trabajo Fin de Máster
            • Bibliography
            • Proposal
        • Machine Learning Stanford Coursera
          • Regresión Lineal
          • Regresión Logística
          • Ecuación Normal
          • Neural Networks
          • Neural Networks Appendix
          • Evaluación de modelos
          • SVM
          • Clustering
          • Dimensionality Reduction
          • Expectation Maximization
          • Further Topics
        • Online Training: Mobile Robotics
          • Bayes Filter
          • Occupancy Grid Maps
          • Motion Model
          • Kalman Filter
          • Particle Filter
      • Docker
        • Docker Basics
        • Advanced Docker Concepts
        • Container Orchestration
      • GraphQL
        • Backend
        • Frontend
      • Math
        • Discrete Mathematics with Applications
          • Speaking Mathematically
          • Logic of Compound Statements
          • The Logic of Quantified Statements
          • Elementary Number Theory and Methods of Proof
          • Sequences, Mathematical Induction, and Recursion
        • Algebra for College Students
          • Equations, Inequalities, and Problem Solving
          • Polynomials
          • Rational Expressions
          • Exponents and Radicals
          • Quadratic Equations and Inequalities
          • Linear Equations and Inequalities in Two Variables
          • Functions
          • Polynomial and Rational Functions
          • Exponential and Logarithmic Functions
          • Systems of Equations
          • Algebra of Matrices
          • Conic Sections
          • Sequences and Mathematical Induction
        • A Graphical Approach to Algebra and Trigonometry
          • Linear Functions, Equations and Inequalities
          • Analysis of Graphs of Functions
          • Polynomial Functions
          • Rational, Power and Root Functions
          • Inverse, Exponential and Logarithmic Functions
          • Systems and Matrices
          • Analytic Geometry and Nonlinear Systems
          • Trigonometric Functions and Applications
          • Trigonometric Identities and Equations
          • Applications of Trigonometry and Vectors
          • Further Topics in Algebra
          • Appendix
        • Calculus Ealy Transcendentals
          • Functions and Models
          • Limits and Derivatives
          • Differential Equations
          • Applications of Differentiation
      • Music
        • Alfred Basic Piano Course I
          • Notation
          • Positions
          • Intervals
          • Chords
          • Scales
          • Keys
          • Tidbits of Music
      • Node.js
        • Intro and Basics
        • Core Concepts and Patterns
        • Modules and Networking
        • HTTP and Express Basics
        • API Development and Middleware
        • Database and Authentication
      • Notes
        • Computer Science
        • Data Science
        • Math
        • Music
        • Other
          • MacOS VM
          • Arch Linux Installation
        • Web Development
          • Backend
            • Docker
            • Node.js
            • Spring
          • Frontend
            • GraphQL
            • React
      • Planner
        • Computer Science
        • Development
        • Math
        • Physics
      • React
        • Basics
        • Advanced
        • Performance Optimization
        • Redux
      • Spring
        • Intro and Core Framework
          • Spring With XML Configuration
          • Java Annotations
          • Spring Configuration with Java Code
        • Spring MVC
          • Form Tags
          • Form Validation
        • Spring Hibernate
        • Spring REST
        • Spring Boot
        • Spring Thymeleaf
        • Spring Maven
        • Spring Security
        • Spring AOP
      • Artificial Intelligence Robotics
        • Histogram Localization
        • Kalman Filters
        • Particle Filters
        • Search
        • PID Control
        • SLAM
      • Data Science Master
        • Aprendizaje Automático II
          • Tema 1. Random Forests
          • Tema 2. Intensificación (boosting)
          • Tema 3. Otras Combinaciones de Modelos
          • Tema 4. Aprendizaje No Supervisado
        • Deep Learning
          • T1. Fundamentos de las Redes Neuronales Profundas
          • T2. Tipologías de las redes neuronales profundas
          • T3. Herramientas y estrategias de programación e implemetación de redes neuronales
          • T4. Redes Neuronales Convolucionales en Visión Artificial
          • T5. Redes Neuronales Recurrentes
          • T6. Servicios y Proveedores de Deep Learning en la Nube
        • Modelos Bayesianos Jerárquicos
          • Introduccion a la Inferencia Bayesiana
          • Modelos Jerarquicos
          • Evaluación y Comparación de Modelos
          • Aspectos Computacionales de la Inferencia Bayesiana
          • Appendix
        • Infraestructuras Computacionales para Procesamiento de Datos Masivos
          • Ecosistema Big Data
          • Técnicas de procesamiento masivo
          • Gestión de la información en tiempo real
          • Servicios en la nube para el almacenamiento y procesamiento de datos
        • Trabajo Fin de Máster
          • Bibliography
          • Proposal
      • Machine Learning Stanford Coursera
        • Regresión Lineal
        • Regresión Logística
        • Ecuación Normal
        • Neural Networks
        • Neural Networks Appendix
        • Evaluación de modelos
        • SVM
        • Clustering
        • Dimensionality Reduction
        • Expectation Maximization
        • Further Topics
      • Online Training: Mobile Robotics
        • Bayes Filter
        • Occupancy Grid Maps
        • Motion Model
        • Kalman Filter
        • Particle Filter

      Artificial Intelligence Robotics

      Localization Kalman Filters Parlicle Filters Search PID Control Slam